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Abstract
The human volatilome comprises a vast mixture of volatile emissions produced by the human body and its microbiomes. 
Following infection, the human volatilome undergoes significant shifts, and presents a unique medium for non-invasive 
biomarker discovery. In this review, we examine how the onset of infection impacts the production of volatile metabolites 
that reflects dysbiosis by pathogenic microbes. We describe key analytical workflows applied across both microbial and 
clinical volatilomics and emphasize the value in linking microbial studies to clinical investigations to robustly elucidate the 
metabolic species and pathways leading to the observed volatile signatures. We review the current state of the art across 
microbial and clinical volatilomics, outlining common objectives and successes of microbial-clinical volatilomic workflows. 
Finally, we propose key challenges, as well as our perspectives on emerging opportunities for developing clinically useful 
and targeted workflows that could significantly enhance and expedite current practices in infection diagnosis and monitoring.
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Introduction

The growing threat of infectious diseases has proven to be 
a significant burden on public health and economies [1]. 
On a global level, the spread of disease has been accel-
erated by rising populations worldwide, increased travel 
and trade [2], increased human interference with nature 
and wildlife [3, 4], and the overuse of antibiotics [5, 6]. A 
major factor in the increase in severity and mortality rates 
of infectious diseases is the rapid spread of antimicrobial 
resistance [6]. Despite recent developments in molecular 

diagnostics, these techniques are expensive to employ, 
are highly specialised, and are not universally accessible. 
Endogenous blood biomarkers such as white blood cell 
count, erythrocyte sedimentation rate, C-reactive protein, 
and procalcitonin are regularly used as indicators of the 
host response to infection and therefore a relative measure 
of infection severity [7, 8]. However, these markers are 
highly sensitive to comorbidities and can be unreliable for 
the discrimination of inflammation caused by or independ-
ent of infection. Chest X-rays and microbiology culture 
methods are also common in identifying infections, but 
subject to long waiting times and low accuracy. Develop-
ment of innovative techniques to accurately target specific 
volatile patterns and/or biomarkers of infectious diseases 
would provide a rapid, cost-effective, and non-invasive 
alternative to conventional methods.

Microbes emit volatile organic compounds (VOCs) as 
products of primary and secondary metabolic pathways. 
Across microbial kingdoms, the metabolism of sugars, 
lipids, amino acids, sulfur- and nitrogen-containing com-
pounds, and aromatic compounds and the subsequent 
metabolism of those products give rise to thousands of 
VOCs [9–11]. As such the microbial volatilome is defined 
as the holistic collection of VOCs produced by microbes. 
Analysing pure cultures in varying growth conditions 
allows accessory and core VOCs to be characterised. 
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These techniques have been recently highlighted as a 
potential route towards discovery of volatile biomark-
ers of infection. Discriminatory volatilomic patterns and 
compounds have been associated with infectious diseases 
and maladies such as pneumonia, tuberculosis, COVID-
19, and wounds. Identifying VOCs from the growth of 
specific pathogens in vitro provides an insight into altered 
metabolism during infection.

Wide variation in experimental and instrumental tech-
niques used across volatilomics has essentially slowed 
progress towards clinical biomarker validation, and inde-
pendent validation studies producing multi-dimensional 
data struggle to find common ground. However, the field 
and literature-base are rapidly progressing, with reviews 
[9, 12, 13], books [10], and online databases [14] increas-
ing confidence in specific VOCs being validated towards 
clinical translation. However, it is critical to move towards 
standardised methods of sample collection, pre-analytical 
preparation, and analysis. Such a move will reduce biases 
and improve reproducibility of results across studies and 
ultimately lay the foundations for future clinical applica-
tions of volatilomics.

The aim of this review is to highlight the clinical potential 
of microbial VOCs for future diagnostics. An initial broad 
discussion of the fundamental pathways from which these 
metabolites are generated will precede a discussion of key 
topics: sampling and analysis tools used in microbial and 
clinical volatilomics; translation of in vitro microbial vola-
tilomics into clinical volatilomics; the challenges and emerg-
ing directions of volatilomics.

Metabolic pathways involved in microbial 
volatilomes

Primary metabolism

Primary metabolic products are derived from pathways 
such as glycolysis, fermentation, the tricarboxylic acid 
(TCA) cycle, and various electron transport chains [15]. In 
primary metabolism, carbon is derived from organic mate-
rial (chemoorganotrophy), atmospheric  CO2, or other inor-
ganic molecules (chemolithotrophy), to generate energy in 
the form of adenosine triphosphate (ATP). When oxygen is 
utilised as the final electron acceptor, many microbes can 
oxidize glucose completely to the inorganic volatile  CO2 
to generate a maximum amount of ATP. The steps involved 
in the complete oxidation of glucose give rise to a variety 
of highly volatile primary metabolites such as acetic acid, 
acetoin, and acetaldehyde. Under oxygen-limited conditions, 
lower growth rates are characterised by the use of exogenous 
 SO4

2−,  NO3
−, or  CO3

2− as alternative electron acceptors to 
generate comparatively less ATP [16]. In addition to these 

key alternative electron acceptors, some compounds are 
used as electron sinks; e.g., dimethyl sulfoxide (DMSO) is 
reduced to dimethyl sulfide, and trimethyl amine-N-oxide 
(TMAO) to trimethylamine [11]. By utilising all available 
electron acceptors, microbes can survive longer in different 
environments including low-oxygen environments. Without 
external electron acceptors, microbes can initiate fermenta-
tion and transfer the electrons to internal acceptors. This 
process is primarily characterised by the production of etha-
nol but can lead to the emission of a variety of alcohols, 
fatty acids, ketones, aldehydes, and other chemical classes. 
Certain bacteria and fungi can excrete fermentation prod-
ucts even in the presence of oxygen and other high potential 
electron acceptors. This seemingly less efficient and waste-
ful phenomenon is known as overflow metabolism [17]. It 
is characterised by the excretion of acetate (the “acetate 
switch” [18]), which can occur aerobically when growth on 
excess glucose inhibits respiration (i.e. the Crabtree effect 
[19]). This can also be due to an enzyme of the tricarboxylic 
acid cycle being missing or repressed [20].

Secondary metabolism

Primary metabolic intermediates and products can be further 
metabolised into large numbers of secondary metabolites 
[9, 12]. Secondary metabolism typically occurs during the 
stationary phase of microbial growth as microbes begin to 
exhaust all available primary substrates. The metabolites 
generated through secondary metabolism are highly diverse 
containing a variety of chemical classes such as terpenes, 
aromatic compounds, sulfurous and nitrogenous compounds, 
and fatty acid derivatives. Unlike primary metabolites which 
are highly common across the microbial kingdom, second-
ary metabolites are potentially species-specific and mediate 
various host-microbe and microbe-microbe interactions [11].

Short‑chain and aromatic amino acid metabolism

Amino acids can be derived from microbial breakdown of 
host proteins during tissue necrosis. The metabolism of these 
amino acids is a key source of volatile metabolites. Leu-
cine is a short-chain amino acid that is readily catabolised 
by microbes. VOCs such as 3-methyl-1-butanol (isoamyl 
alcohol), 3-methylbutyric acid (isovaleric acid), 2-methylbu-
tyric acid, and 3-methyl-1-butanol acetate (isoamyl acetate) 
[21] result from this catabolism. The shikimate pathway is 
a seven-step metabolic pathway linking the metabolism of 
sugars to the biosynthesis of aromatic compounds [22]. Key 
amino acids such as tryptophan, tyrosine, and phenylalanine 
are commonly produced using this pathway. Phenylethyl 
alcohol [23], indole [24], and 2-aminoacetophenone [25] 
are examples of downstream metabolites produced at various 
stages of this pathway [17]. In the context of infection, some 
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microbes form biofilms in vivo as a survival mechanism. In 
Candida spp., the upregulation of amino acids during bio-
film development [26] can shift cell metabolism in favour of 
amino acids over sugars. A recent work has supported this 
by demonstrating the volatile output of amino acid–derived 
metabolites increases as Candida spp. biofilms mature [27]. 
Sulfur-containing volatiles are primarily derived from the 
oxidation of methanethiol. Methanethiol is associated with 
decaying biomass. It spontaneously dimerises in air to form 
dimethyl disulfide [28] but also can be oxidised metaboli-
cally by microbial oxidase enzymes [29] to form sulfides, 
disulfides, and trisulfides. In living systems, sulfur-contain-
ing volatile compounds can also be generated through the 
metabolism of sulfur-containing amino acids cysteine and 
methionine [30]. These pathways are particularly relevant 
to volatilomes of gastrointestinal (GI)-associated pathogens 
such as Helicobacter pylori [31] and Clostridium difficile 
[32], which both have volatile sulfurous-compound profiles.

Fatty acid biosynthesis and degradation

During human infections, many pathogens efficiently metab-
olise host fats [33, 34] to compensate for low availability of 
sugars and amino acids. Fatty acids are typically synthesised 
by condensation reaction between acetyl CoA and malonyl 
CoA before undergoing several stages of chain elongation. 
Microbes are capable of utilising a variety of starter units 
— other than acetyl CoA — for this particular reaction and 
results in vast diversity in compounds produced. Decarboxy-
lation of intermediate compounds — produced as biproducts 
of each chain extension cycle — leads to the generation of 
various alkanes, 1-alkenes, and methyl ketones [21]. Micro-
bial breakdown of fatty acids involves a ß-oxidation reaction 
that ultimately ends with the acetyl CoA starter unit [35] 
liberating a variety of volatile ketones, aldehydes, acids, 
and alcohols of varying chain lengths at each degradative 
step. Hydrolysis and reduction reactions of metabolic inter-
mediates also give rise to a variety of compounds such as 
acids, 1-alcohols, and aldehydes. This pathway is utilised 
by many bacteria, including infection-causing pathogens. 
For example, 1-undecene was detected in breath of patients 
with Acinetobacter baumannii–positive ventilator-associated 
pneumonia (VAP) [36].

Analytical techniques used across microbial 
and clinical volatilomics

Microbial culture headspace (HS) experiments are typically 
carried out in glass HS vials [16, 36–41]. Alternative HS col-
lection vessels such as cell culture well plates may be used 
dependent on the experimental objectives being pursued 

[27, 42]. Table 1 provides several experimental systems 
used across microbial volatilomics investigations. Clinical 
translation has primarily been focused on breath research, 
likely due to the relative ease of non-invasive sample collec-
tion. Sampling and analysis of breath samples has been com-
prehensively reviewed [43, 44]. A significant development 
in breath sample collection was catalysed by the Breathe-
Free Consortium in the standardisation of an open-source 
breath sampling device (ReCIVA, Owlstone Medical) [45]. 
Other human matrices such as sputum, urine, blood, faeces, 
sperm, sweat, and wound tissue/fluid also provide opportuni-
ties for clinical volatilomic research, examples of which can 
also be seen in Table 1. Large reference libraries available 
with techniques such as GC–MS support broad untargeted 
screening of compounds (e.g. NIST mass spectral library) 
are commonly used to identify VOCs. GC–MS utilises a 
temperature ramp across narrow open-tubular columns to 
allow high-resolution analysis of trace analytes of varying 
volatilities. Compounds eluting from the GC column are 
then fragmented in a highly reproducible process via elec-
tron ionisation before passing to the MS detector. Electron 
ionisation of compounds allows the construction of vast 
reference libraries such as NIST due to the reproducibil-
ity of the process. However, the diversity of molecules that 
can be analysed is limited in conventional one-dimensional 
GC–MS due to its individual use of either a polar or non-
polar column and low-resolution mass analyser. The range of 
compounds that can be accurately analysed per run as well 
as chromatographic resolution can be significantly enhanced 
using two-dimensional GC–MS (GC × GC)(46). GC × GC 
incorporates two separation stages using two columns with 
different retention mechanisms that are connected to each 
other via a modulator that traps compounds eluting from the 
first column before rapidly injecting them into the second 
column. As discussed later in this review, high-resolution 
mass analysers such as time of flight (TOFs) and orbitraps 
also expand the untargeted screening capabilities of GC–MS 
by accurately revealing the ionic species present in chro-
matographic peaks. Untargeted whole volatilome profiling 
allows a wide range of volatile compounds to be identified 
and assessed for their discriminative impact. Discriminative 
compounds identified in untargeted clinical analyses must be 
subsequently targeted, quantified, and validated before being 
proposed as potential biomarkers of disease. However, wide 
variation in experimental techniques used across microbial 
and clinical volatilomics limits cross-study comparisons of 
data and ultimately blocks external validation of results. 
Several studies use direct mass spectrometric techniques 
which have limitations in the range of compounds which 
can be analysed. That said, routine workflows have been 
implemented for techniques such as selected ion flow tube 
(SIFT)-MS [47], as shown in Fig. 2.
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Sorption‑based sampling with gas 
chromatography‑mass spectrometry

Thermal desorption sampling using sorption tubes and solid 
phase micro-extraction (SPME) fibers are commonplace in 
microbial and clinical volatilomics. Less common thermal 
desorption sampling such as stir-bar sorptive extraction 
(SBSE) has also been effectively applied for in vitro VOC 
sampling [48]. These sampling approaches are all compat-
ible with GC–MS. Sorption tubes are typically stainless 
steel or glass tubes, or needle trap devices that are packed 
with a single or combination of sorbent material beds (e.g. 
porous polymers, graphitised carbon, silica gels) to expand 
the range of analytes that can be trapped [49]. The sorbent 
materials used for a particular experiment must be carefully 
considered and optimised against other materials as extrac-
tion yields, selectivity, and reproducibility are significantly 
associated with specific sorbents [50].

This technique has proven to be well suited to clini-
cal breath studies (Table 1) where the breath sample is 
typically collected into sorption tubes for offline analysis. 
SPME utilises a chemically enhanced silica fiber (station-
ary phase) consisting of various phases to capture a wide 
range of analytes via an equilibrium extraction mecha-
nism. During sampling, the SPME fiber is exposed to an 
enclosed sample HS where — at an experimentally deter-
mined time point — a partitioning equilibrium between the 
sample matrix and fiber is reached. At this point, the fiber 
can be retracted from the sample HS and injected into the 

GC–MS. Each phase has unique pore sizes and polarity 
characteristics that allow the retention of both small vola-
tile non-polar compounds and larger less volatile, polar 
compounds [51]. Research into advanced fiber coatings is 
being carried out to expand on the ranges of compounds 
that can be extracted by SPME [52]. SBSE relies on asep-
tic stir bars that can be coated with sorbent materials such 
as polydimethylsiloxane/ethylene glycol and exposed to 
VOCs in an enclosed system before being thermally des-
orbed and analysed using GC–MS [48].

Online and near‑patient volatilomics profiling

Online and near-patient analyses are a promising pros-
pect for volatilomic profiling investigations. The advan-
tages of direct detection methods (Table  1) include 
real-time targeted analysis, absolute quantification, 
and high sensitivity. Samples are analysed immediately 
on collection, which eliminates potential errors that 
could arise as a result of sample storage and transpor-
tation [53]. Near-patient techniques as demonstrated 
by Ruszkiewicz et  al. [54] (Fig.  1) involve sampling 
from the patient and analysing on a nearby instrument 
such as ion mobility spectrometry. This point-of-care 
analysis is ideal for immediate results for example in 
emergency triage. Frequently used direct techniques in 
volatilomics include proton transfer reaction (PTR)-MS, 
SIFT-MS, ion molecule reaction (IMR)-MS, ion mobility 

Table 1  Overview of frequently used sampling and analytical methods in microbial and clinical volatilomics

Technique Benefits Limitations Microbial volatilomics Clinical volatilomics

SPME fibre • Diverse analyte range
• Easily automated with 

GC–MS
• Adaptable sampling meth-

ods e.g. cutaneous (skin, 
wounds)

• Semi-quantitative chal-
lenging

• Storage of sample
• Method optimisation 

required

• HS vial [36–41]
• Culture vessel[61]
• Glass enclosed 6-well 

plate[27]

• Skin [27, 62]
• Breath [63, 64]
• Wounds[65–67]
• Faeces[68]

Sorption tube/needle trap • Diverse analyte range
•Easily automated with 

GC–MS
• Suitable for breath analysis
• Can be stored and trans-

ported after sampling

• Method optimisation 
required

• Not suitable for online 
analysis

• Water retention issues

• HS vial [69, 70]
• Culture vessel [71]

• Breath [36, 37, 72]
• Faeces [73]

Gas collection bag/direct 
syringe

• Simple collection proce-
dure

• Pre-concentration required 
for non-sorbent syringe 
methods

• Cannot be stored long 
term

• HS vial [74, 75] • Breath [54, 76]

Real-time analysis (SIFT-, 
PTR-, SESI-MS)

• Quantification
• Real-time
• Highly sensitive (LOD < 1 

ppb)
• Targeted analysis
• Low cost per sample

• Challenging for screening 
of unknowns

• Limited VOC profiles
• High instrument cost

• HS vial [47, 77–79]
• Biofilm assay [80]
• Culture vessel [81]

• Skin [82]
• Breath [55, 78–80]



Volatilomes of human infection  

1 3

spectrometry (IMS)-MS, and secondary electrospray ion-
isation (SESI)-MS. Among these techniques, the most 
frequently employed in volatilomics are SIFT-MS [55] 
and PTR-MS [56] as these have the advantage of analys-
ing very volatile compounds such as hydrogen cyanide 
from cystic fibrosis (CF) patients with lung infection 
or dynamic change in breath VOC concentrations [57, 
58]. Workflows based on these techniques have been 
adapted for both microbial and clinical volatilomics stud-
ies (Table 1). However, due to limited reference librar-
ies, these methods are not currently suitable for holistic 
volatilome profiling. It is important to note the use of 
e-nose technology for near-patient real-time VOC meas-
urements; however, as this technique is limited in its 
molecular identification capabilities, the discussion of 
its mechanics and applications is outside the scope of this 
review and can be found elsewhere [59, 60].

Microbial and clinical volatilomics

Characterisation of microbial volatilomes involves com-
piling data from experiments in different environments, 
growth phases, and experimental systems. The progressive 
development of the mVOC database has enabled the broad 
profiling of metabolites emitted from many microbes 
[83]. Broadly speaking, microbial volatilomic studies 
have aimed at comprehensively characterising pathogen 
volatilomes; discriminating pathogen volatilomes from 
each other (Fig. 2 and previous literature [38, 40, 84]); 
identifying the chemical origin of novel secondary micro-
bial metabolites [85]; and testing growth conditions that 
affect metabolite production [86]. Pathogen volatilomes 
have been screened in vitro to identify potential markers 
of disease for clinical investigations [36, 37, 39, 87]. Con-
ditions such as growth phase of cells, nutritional media, 
and temperature influence the resulting volatile emis-
sions from microbial cells [88]. Therefore, the results 
from these studies cannot be directly translated to clinical 
applications and careful consideration of these factors is 
required before planning clinical volatilomic experiments. 
However, microbial metabolites that have been previously 
detected in the HS of pure cultures have also been detected 
in samples taken in humans and animals infected with 
these pathogens (Fig. 3). These occurrences have been 
limited to the detection of bacterial and fungal pathogens. 
Respiratory viral infection has previously demonstrated 
discriminatory volatilomic shifts in human cells in vitro 
[89, 90]; however, detecting volatiles specific to a virus is 
unlikely as they do not produce their own metabolites and 
instead differential VOCs would originate from altered 
host metabolism [91].

Bacterial and fungal lung infection

Several bacterial and fungal infections have been investi-
gated including in patients with CF and VAP. Breath volatile 
analysis of intensive care patients on mechanical ventilation 
showed that those with VAP or ventilator-associated lower 
respiratory tract infection could be distinguished from those 
without infection [92–94].

Semi-targeted investigations have detected Escherichia 
coli, Staphylococcus aureus, Candida albicans [37], Aci-
netobacter baumannii [36], and Aspergillus fumigatus [95] 
in the breath of intensive care patients. In these studies, 
the compounds detected in both in vitro and breath screens 
included primary, fatty acid, and amino acid metabolites 
such as acetic acid, 3-methylbutanal, indole, and 1-undecene. 

Direct sampling Bag sampling

Fig. 1  Frequently used in  vivo volatilomic breath sampling tech-
niques. Top: direct syringe sampling apparatus employed by Ruszk-
iewicz et al. [54] for GC–MS breath profiling of COVID-19 patients. 
Middle: syringe-sorption tube sampling workflow for breath profiling 
of ventilator associated pneumonia (VAP) patients followed by GC–
MS analysis [37]. Bottom: direct breath sampling and bag sampling 
of breath for direct quantification of target analytes by SIFT-MS [55]
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The detection of 1-undecene in A. baumannii highlights 
the potential for detecting Pseudomonas aeruginosa from 
clinical samples, as this metabolite is a core component of 
its volatilome [40]. Most recently, following preliminary 
in vitro screening of multiple VAP-associated pathogens, 
3-methylbutanal and 3-methylbutyric acid were identified in 
breath of mechanically ventilated patients as strong predic-
tors of S. aureus–associated infection [87]. Similarly, studies 
investigated breath profiling of CF patients with chronic P. 
aeruginosa [96–98] and S. aureus [99] infection were able 
to classify infected and non-infected patients.

Tuberculosis

Preliminary detection of fatty acid–derived hydrocarbons in 
Mycobacterium tuberculosis cultures allowed semi-targeted 
in vivo investigations in which the breath of subjects with 
tuberculosis and non-infected subjects were discriminated [39, 
100]. Genomic sequencing of M. tuberculosis revealed its fatty 
acid degradation pathways are disproportionately active com-
pared to other pathogens [101]. Animal models have demon-
strated that during infection M. tuberculosis heavily relies on 
host lipids for survival [33] — demonstrating potential of fatty 
acid metabolites as target chemical groups for future pathogen 
detection. However, results from a limited number of in vitro 
investigations have also highlighted amino acid metabolism 
activity in the M. tuberculosis volatilome [102–104]. M. tuber-
culosis has been described to effectively utilise amino acids as 
a primary source of nitrogen in vitro [105] most likely giving 

rise to aromatic volatile by-products. For complex pathogens 
such as M. tuberculosis, incorporating lipid substrates such as 
cholesterol into the nutritional media may increase the speci-
ficity and clinical applicability of in vitro studies. Significant 
developments in infection modelling using organ-on-a-chip 
technology [106] also increase potential applicability of such 
models for infection volatilomes in the future.

Wound infection

Prominent wound-associated pathogens include Staphylo-
coccus spp., Proteobacteria spp., Streptococcus spp., and 
anaerobic bacteria including Clostridium spp. [107]. Vola-
tiles collected from the HS of Proteobacteria spp. blood 
cultures included dimethyl disulfide, dimethyl trisulfide, 
phenol, and indole [65]. The S. aureus volatilome is charac-
terised by the emission of isovaleric acid and 3-methylbuta-
nal (leucine degradation), acetic acid, and butyric acid [38, 
40]. These acidic and sulfurous compounds, along with phe-
nol, 3-methylbutanal, and indole, were detected from a HS 
sampling of wound dressings taken from fungating cancer 
wounds [66, 67]. Differentiation of volatile signatures from 
swab samples taken from infected and non-infected wounds 
using e-nose technology has recently been reported [108]. 
Due to compound identification limitations, metabolites 
responsible for that difference were not established. While 
such studies illustrate infection-specific volatilomic differ-
ences potentially exist in wounds, MS-based workflows are 
required to fully elucidate differential VOCs.

Fig. 2  Principal component 
analysis (PCA) is frequently 
used in microbial and clinical 
volatilomics to visualise dif-
ferences between study groups 
(e.g. different patient groups 
or microbial species). In PCA 
score plots shown here, clear 
discrimination between three 
clinically prevalent bacterial 
pathogens is observed across 
different nutritional growth 
media (BHI, brain heart infu-
sion; LB, lysogeny broth; TSB, 
tryptic soy broth). Despite 
differences, species retain key 
metabolic activity across vary-
ing nutritional environments 
and emit many of the same 
characteristic metabolites — 
known as the core volatilome 
[40]
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Gastrointestinal and urinary tract infection

Helicobacter pylori infection of the gut causes stomach 
ulcers.  The13C urea breath test is routinely used to detect H. 
pylori infection. H. pylori has also been linked to develop-
ment of tumorigenesis [109]. Fatty acids in exhaled breath 
have been linked to potential partitioning of microbial 
metabolites across the digestive tract and into the airways 
[110, 111]. Higher abundances of fatty acids, phenols, and 
aldehydes in the breath of patients with gastric cancer have 
also been reported [100, 112] compared to healthy controls. 
These volatilomic shifts cannot be attributed to any specific 
microbe(s) but they potentially indicate a microbiome shift 
associated with disease. Another potential route for detect-
ing volatile biomarkers of disease associated with the gut 
microbiome could be through the analysis of faecal samples 
to detect clinically important pathogens such as Clostridium 
difficile [32, 73]. Culturing urine samples to detect urinary 
tract infection (UTI) can be time-consuming and direct VOC 
profiling may provide an alternative for detection of com-
mon UTI pathogens including E. coli and Proteus species 
[113].

Viral infection

Detecting viral pathogens such as SARS-CoV-2 or influenza 
virus using VOCs is challenging as these pathogens utilise 
the host metabolic system to support their growth. Therefore, 

detecting viruses requires a comprehensive understanding of 
the “healthy” human volatilome so that any deviations from 
it could be characterised and correlated with specific infec-
tions. Respiratory viral infection has been previously shown 
to cause discriminatory volatilomic shifts in human cells 
in vitro [90]. From the limited number of COVID-19 breath 
studies [54, 114–116], there have been discriminatory pat-
terns between patient groups based on shifts in abundance 
of regular aldehydes heptanal, octanal, and nonanal. These 
are common components of the human volatilome and they 
are associated with oxidative stress and potentially indicate 
inflammatory response, as have been found in viral infection 
[117, 118]. Increased breath alkane abundance through the 
breakdown of lipids has also been associated with oxida-
tive stress [119]. A recent example is decane, reported in 
breath volatilomic studies in patients infected with COVID-
19 [116] and rhinovirus (RV)-A16 [89]. However, while the 
similarities in discriminative VOCs across these diseases 
highlight the presence of an inflammatory volatilome, they 
also illustrate the challenge of characterising disease-specific 
discrimination (Table 2).

Challenges and emerging directions

Key challenges in clinical volatilomics are associated with 
upscaling untargeted workflows and developing validated 
disease-specific targeted assays.

Fig. 3  Developing a bottom-up 
targeted clinical volatilomics 
workflow for pathogen detec-
tion. A Pathogenic microbes/
human cell lines are cultured 
under varying environmental 
conditions from which VOCs 
are collected and analysed, e.g. 
using GC–MS. B Following 
peak identification and valida-
tion, VOC data are analysed 
using untargeted techniques 
such as hierarchical clustering 
to identify highly discriminant 
and characteristic pathogen-
associated VOCs. C Clinical 
patient sample (e.g. breath) 
is collected and analysed. D 
In vitro data used to establish a 
diagnostic model for predicting 
presence of pathogens in patient 
samples. For example, receiver 
operating characteristic (ROC) 
curves assess the sensitivity 
indicated by the area under the 
curve (AUC) of target mole-
cules present in patient samples 
for identified pathogens
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The “healthy” human volatilome and exogenous 
volatiles

Eliminating background interference is a complex issue in 
clinical volatilomics. VOCs are generated from a huge vari-
ety of both endogenous and exogenous sources. The various 
matrices comprising the (healthy) human volatilome col-
lectively comprises 2746 compounds [118] with this num-
ber expected to increase in the future [112]. However, it is 
difficult to validate if this is a true reflection of the human 
volatilome or if the same compounds are being detected 
but are being identified inaccurately due to differences in 
instrumentation or identification criteria. To reliably iden-
tify disease-specific volatile biomarkers, the temporal and 
spatial variations across the healthy human volatilome must 
be determined. Firstly, understanding the factors influencing 
the volatilome of healthy individuals day-to-day is critical. 
All analytical matrices have a background volatilome [119] 
that must be established. Secondly, setting sufficient controls 
for interferences introduced from the experimental set-up 
minimises confounders in the analysis. Background signals 
will depend on sample collection procedure and must be 
considered. Factors that influence background during sam-
ple collection include direct contact with the sample site; 
volatilome of the sample collection tool (e.g. cotton swab, 
PDMS patch, Tedlar bag); relative pre-treatments of sample 
prior to analysis; and the volatile composition of the (indoor) 
environment where the sample is taken [120, 121]. Particu-
lar caution must be applied to prevent reporting compounds 
present in indoor air as endogenous.

Structural identification and validation of volatile 
biomarkers

As the number of volatile metabolites reported in untar-
geted studies increases, it is difficult to determine the accu-
racy of the compound identifications. Wide variation in 
instrumentation and the compound identification criteria 
used may result in inaccurate assignments of compounds. 
This is also prevalent in broader metabolomic research 
as there are large discrepancies between the number of 
unique MS features and the effective number of metabo-
lites in biological matrices [122]. For example, in clini-
cal volatilomics, studies (see Table  2) report various 
branched alkanes as discriminating compounds between 
disease-associated and non-disease associated volatilomes. 
Branched alkanes share highly similar mass spectra mak-
ing accurate manual interpretation and identification dif-
ficult. The degree of difficulty in accurately interpreting 
and identifying these compounds also increases as molecu-
lar weight increases due to the higher number of possible 
structural combinations. This challenge is compounded as 
branched hydrocarbons with the same number of carbons 

share similar Kovats retention index values. Due to the 
low cost, robustness, and sensitivity, single quadrupole 
mass analysers are the most common mass analysers used 
for GC–MS analysis. These mass analysers are limited in 
untargeted screening capabilities by their low resolution 
and mass accuracy. This means ions of similar masses 
are poorly differentiated from each other, and that atomic 
masses and elemental compositions of ions are poorly 
defined. High-resolution mass spectrometers such as time 
of flight (TOFs) and orbitraps provide significant improve-
ments in the accurate identification of initially unknown 
chromatographic peaks as they can potentially determine 
the number and nature of ionic species present [125]. Uni-
versal qualitative identification criteria cover parameters 
such as signal-to-noise ratios, minimum diagnostic ions, 
database match scores, retention index windows, and refer-
ence standard confirmation for suspected disease-associ-
ated biomarkers. Validating untargeted compound screen-
ing methods is a challenge as it must ensure robustness and 
reliability of compound identifications down to specific 
concentrations. Therefore, if reference materials are avail-
able for analytes, screening the LOD is essential to estab-
lish the lowest level for which analytes can be reliably and 
reproducibly identified (95% sensitivity/true positive rate) 
[126]. Large patient cohort studies are ideally required to 
validate a threshold concentration of the target VOC that 
discriminates diseased from non-diseased patients. Under-
standing matrix effects by comparing chromatographic 
recovery of target VOCs between spiked matrix samples 
and pure volatilised analytes is also needed for identify-
ing potential co-eluting interferences and validating future 
volatilomic assays.

In vitro volatilomics

In human hosts, colonised microbes catabolise extracellular 
sugars, lipids, proteins, amino acids, and metabolites to gen-
erate energy for essential cellular processes. In vitro studies 
demonstrate the chemical diversity of volatile metabolites. 
The network graph in Fig. 4 (high-resolution version and 
list of VOCs provided as SI files) compiles microbial cul-
ture VOCs reported in literature and illustrates this diversity, 
where metabolites are shared between microbes with simi-
lar characteristics; for example, fungi or mycobacteria share 
similar volatilomes, as do Gram-negative bacteria. However, 
the nutrients available to microbes during growth in vivo 
vary widely in comparison to growth in vitro. Just as in vitro 
volatile signatures vary across different strains and media 
composition, resulting infection-associated volatile signa-
tures will be influenced by the site of colonisation due to the 
site-specific factors such as substrate availability, moisture, 
pH, oxygen, and temperature.
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Table 2  Overview of discriminative VOCs across microbial and clinical volatilomics studies

Compound Chemical class/metabo-
lism

Sampling Analysis In vitro In vivo

2-Butyl-1-octanol Alcohol SPME/sorption tube [36, 
120]

GC–MS [36] A. baumannii [36] VAP [36]
Tuberculosis [120]

2,2-Dimethyl 1-propanol Alcohol Sorption tube [115] GC–MS [115] COVID-19 [115]
Ethanol Alcohol/

fermentation
Sorption tube [37, 92, 

121]
GCMS [37, 92, 121] Many VAP [37, 92]

CF infection [99]
Isopropyl alcohol Alcohol Sorption tube [92] GC–MS [92] VAP [92]
1-Propanol Alcohol Sorption tube [115] GC–MS [115] COVID-19 [115]
Acetaldehyde Aldehyde Sorption tube [37, 120] GC–MS [37, 120] S. aureus [37]

C. albicans [37]
S. pneumoniae [122]
H. influenzae[122]

VAP [37]
Tuberculosis [120]

Acrolein
(propenal)

Aldehyde Sorption tube [92] GC–MS [92] VAP [92]

Ethanal Aldehyde Sorption tube [54, 115] GC–MS [54, 115] COVID-19 [54, 115]
Heptanal Aldehyde Sorption tube [54, 116, 

120]
GC–MS [54, 116, 120]
SIFT-MS [112]

COVID-19 [54, 116]
Tuberculosis [120]
Gastric cancer [112]

3-Methylbutanal Aldehyde Sorption tube [37, 87, 
120]

SPME [40, 41]

GC–MS [37, 40, 41, 87] S. aureus [37, 40, 41, 87]
M. tuberculosis [120]

VAP [37, 87]
Tuberculosis [120]

Methylpent-2-enal Aldehyde PTR-MS [114] COVID-19 [114]
Nonanal Aldehyde Sorption tube [36] GC–MS [36]

PTR-MS
SIFT-MS[112]

A. baumannii [36] VAP [36]
COVID-19 [84, 115, 116]
Tuberculosis[120]
Gastric cancer[112]

Octanal Aldehyde Sorption tube [115] GC–MS [115]
SIFT-MS [112]

COVID-19 [54, 115, 116]
Gastric cancer [112]

Propanal Aldehyde Sorption tube [37] GC–MS [37] S. aureus [37]
C. albicans [37]

VAP [37]

Tetradecanal Aldehyde Sorption tube [92] GC–MS [92] E. coli [40, 41] VAP [92]
Benzaldehyde Aromatic Sorption tube [115] GC–MS [115] COVID-19 [115]
4-(1,1-Dimethylpropyl)

phenol
Aromatic Sorption tube [39] GC–MS [39] M. tuberculosis [39] Tuberculosis [39]

Ethyl phenol Aromatic SIFT-MS [65, 66] Gastric cancer [65, 66]
Indole Aromatic/

tryptophan derivative
SPME [66]
MCC-IMS [121]

GC–MS [66]
MCC-IMS [121]

E. coli [40, 41, 121]
P. vulgaris [65]
P. rettgeri [65]
P. mirabilis [65]
K. oxytoca [65]
P. stuartii [65]

VAP [121]
Wounds [66]

Methyl phenol Aromatic SIFT-MS [65, 66] Gastric cancer [65, 66]
2-Methyl naphthalene Aromatic Sorption tube [99] GC–MS [99] CF infection
Naphthalene, 1-methyl- Aromatic Sorption tube [120] GC–MS [120] Tuberculosis [120]
Phenol Aromatic SPME [65, 66] GC–MS

SIFT-MS [65, 66]
P. vulgaris [65]
P. rettgeri [65]
P. mirabilis [65]
K. oxytoca [65]
P. stuartii [65]

Wounds [65, 66]
Gastric cancer [100, 112, 

123]

2,3,6-Trimethylnaptha-
lene

Aromatic Sorption tube [39] GC–MS [39] M. tuberculosis [39] Tuberculosis [39]

Acetic acid Fatty acid/
fermentation

Sorption tube [37, 123] GC–MS [37],[40] S. aureus [37, 40, 41],
E. coli [40, 41]
S. pneumoniae [122]
H. influenzae [122]

VAP [37]
Gastric cancer [123]

Butyric acid Fatty acid/
fermentation

Sorption tube [37, 123] GC–MS [37, 123]
PTR-MS [123]

S. aureus [37, 38]
C. albicans [37]

VAP [37]
Gastric cancer [123]

Hexanoic acid Fatty acid Sorption tube [123] GC–MS [123]
PTR-MS [123]
SIFT-MS [100, 112]

Gastric cancer [100, 112, 
123]
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Human cell lines have been previously used to inves-
tigate the volatilomics of cancers [124, 127], inflamma-
tion [128], and viruses in vitro [84, 129]. Future in vitro 
pathogen volatilomics studies should incorporate nutrient-
limited media as well as constituents such as keratino-
cytes, mucus, cholesterol, human cell lines, or blood-based 

media to achieve a clearer understanding of potential vola-
tile outputs from infected human hosts. Organ-on-a-chip 
technology is currently being investigated as an alternative 
to animal testing for various applications including infec-
tion models [99, 130]. Similar organotypic models have 
recently been adapted to study volatilomic interactions 

MCC-IMS, multi-capillary column-ion mobility spectrometry; CF, cystic fibrosis; VAP, ventilator-associated pneumonia; H. influenzae, Haemo-
philus influenzae; P. vulgaris, Proteus vulgaris; P. rettgeri, Proteus rettgeri; P. mirabilis, Proteus mirabilis; P. stuartii, Proteus stuartii; K. oxytoca, 
Klebsiella oxytoca

Table 2  (continued)

Compound Chemical class/metabo-
lism

Sampling Analysis In vitro In vivo

Pentanoic acid Fatty acid Sorption tube [123] GC–MS [123]
PTR-MS [123]
SIFT-MS [100, 112]

Gastric cancer [100, 112, 
123]

1-Chloroheptane Halogenated
compound

PTR-MS [114] COVID-19 [114]

1,3-Butadiene Hydrocarbon Sorption tube [37] GC–MS [37] S. aureus [37]
S. pneumoniae [122]

VAP [37]

Cyclohexene Hydrocarbon Sorption tube [115] GC–MS [115] COVID-19 [115]
Decane Hydrocarbon Sorption tube [116] GC–MS P. aeruginosa [40, 41]

S. epidermidis [41]
E. coli [41]

COVID-19 [109]

4-Ethyl-2,2,6,6-tetra-
methylheptane

Hydrocarbon Sorption tube [39, 117] GC–MS [39] M. tuberculosis [39] Tuberculosis [39]

Heptane Hydrocarbon Sorption tube [86] GC–MS [86] VAP [86]
3-Heptene Hydrocarbon Sorption tube [108] GC–MS [108] COVID-19 [108]
4-Methyl-1-decene Hydrocarbon Sorption tube [39] GC–MS [39] M. tuberculosis [39] Tuberculosis [39]
2-Methylpropene Hydrocarbon Sorption tube [37] GC–MS [37] S. aureus [37] VAP [37]
5-Methyl-5-propyl-

nonane
Hydrocarbon SPME [36]

Sorption tube [36]
GC–MS [36] A. baumannii [36] VAP [36]

Nonane Hydrocarbon Sorption tube [117] GC–MS [117] VAP [117]
Octane Hydrocarbon Sorption tube [117] GC–MS [117] VAP [117]
2,4-Octadiene Hydrocarbon PTR-MS [80] COVID-19 [80]
1-Octene Hydrocarbon Sorption tube [113, 117] GC–MS [113] Tuberculosis [113]
Pentadecane Hydrocarbon Sorption tube [108, 117] GC–MS [108, 117] P. aeruginosa [41] COVID-19 [108]

VAP [117]
1,4-Pentadiene Hydrocarbon Sorption tube [93] GC–MS [93] S. aureus CF infection [93]
Tetradecane Hydrocarbon SPME [41]

Sorption tube [36, 37, 
117]

GC–MS [41] A. baumannii [36]
E. coli [41]

VAP [36, 37, 117]

Tridecane Hydrocarbon Sorption tube [108, 113, 
117]

GC–MS [108, 113, 117] P. aeruginosa [40] COVID-19 [108]
Tuberculosis [113]
VAP [117]

2,6,10-Trimethyl-
dodecane

Hydrocarbon SPME [36]
Sorption tube [36]

GC–MS [36] A. baumannii [36] VAP [36]

Undecane Hydrocarbon Sorption tube [99, 124] GC–MS [99, 124] CF infection [99]
VAP [124]

1-Undecene Hydrocarbon SPME [36]
Sorption tube [36]

GC–MS [36] A. baumannii [36]
P. aeruginosa [36, 41]

VAP [36]

3-Methylbutyric acid Leucine derivative SPME [40, 41]
Sorption tube [114]

GC–MS [114] S. aureus [38, 40, 41, 
114]

VAP [114]

Carane Monoterpene Sorption tube [86] GC–MS [86] VAP [86]
Longifolene Sesquiterpene SPME [36]

Sorption tube
GC–MS [36] A. baumannii [36] VAP [36]
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that occur between pathogens during pulmonary infection 
[131]. If these models can successfully mimic the patho-
genesis of specific microbes in the body, they may provide 
a route to investigate disease-specific metabolomic and 
volatilomic trends in the future.

Conclusion

In the last 15 years, the clinical potential of volatilomics 
has been demonstrated in numerous studies through the 
detection of discriminative volatilomic patterns for a 

Fig. 4  Network graph of microbes based on shared mVOCs.  Source 
nodes are microbes, and target nodes are mVOCs (grey). Microbe 
colours represent Gram-positive bacteria (purple), Gram-negative 
bacteria (pink), mycobacteria (orange), and fungi (green). Edges con-

nect microbes to reported mVOCs, where the thickness of the line 
correlates to the number of times an mVOC is reported for the same 
microbe (available in high resolution in Electronic Supplementary 
Materials Fig. S1)
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variety of infectious diseases. During infection, patho-
gens metabolise host substrates to generate a diverse set 
of compounds that contribute to the volatilome of specific 
diseases. Many studies have utilised untargeted screening 
of volatiles to discriminate disease-associated and control 
groups. These disease-associated volatilomic patterns have 
consisted of abnormal abundances of various normally 
occurring volatile components of the human volatilome — 
potentially correlating to inflammation. However, common 
microbial metabolites have also been consistently detected 
across various disease-associated groups, and several stud-
ies have clearly demonstrated translation of in vitro micro-
bial volatilomics through clinical samples. Screening the 
volatilomes of potential causative pathogens under varying 
conditions using the same instrumental workflow being 
used in the clinical investigation is a clear and simple tech-
nique of identifying potential microbial cellular origins of 
infection-associated compounds. However, microbial vola-
tilomics cannot just simply be translated into targeted clin-
ical volatilomics; standardising instrumental workflows, 
compound identification, and data processing are critical 
to ensure that results from the bottom-up are accurate and 
precise. A collaborative move to address these challenges 
would significantly promote cross-validation of research 
and underpin support for large-scale clinical studies to 
investigate volatilomics of diverse human infections.
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